Сложение вычитание умножение и деление десятичных дробей примеры

Содержание
  1. Умножение и деление десятичных дробей
  2. Умножение десятичных дробей
  3. Деление десятичных дробей
  4. Умножение десятичных дробей: правила, примеры, решения, как умножать десятичные дроби
  5. Умножение десятичных дробей: общие принципы
  6. Как умножать десятичные дроби столбиком
  7. Как умножить десятичную дробь на 0,001, 0,01, 01, и т.д
  8. Как перемножить десятичную дробь с натуральным числом
  9. Как умножить десятичную дробь на 1000, 100, 10 и др
  10. Как перемножить десятичную дробь с обыкновенной или со смешанным числом
  11. Десятичные дроби
  12. Сложение (вычитание) десятичных дробей
  13. Умножение десятичных дробей на 10, 100, 1000…
  14. Умножение десятичной дроби на разрядную единицу 0,1; 0,01; 0,001…
  15. Деление десятичной дроби на 10, 100, 1000…
  16. Деление десятичной дроби на разрядную единицу 0,1; 0,01; 0,001…
  17. Основные правила математики с примерами. 5 класс – Сайт учителя математики Косыхиной Н.В
  18. Натуральные числа
  19. Сравнение натуральных чисел
  20. Свойства сложения
  21. Формула пути
  22. Корень уравнения
  23. Правила решения уравнений
  24. Отрезок
  25. Свойство длины отрезка
  26. Равные отрезки
  27. Свойство прямой
  28. Измерить отрезок
  29. Ломаная
  30. Луч
  31. Угол
  32. Равные углы
  33. Свойство величины угла
  34. Биссектриса угла
  35. Развернутый угол
  36. Прямой угол
  37. Острый угол
  38. Тупой угол
  39. Равные многоугольники
  40. Равные фигуры
  41. Остроугольный треугольник
  42. Прямоугольный треугольник
  43. Тупоугольный треугольник
  44. Равнобедренный треугольник
  45. Равносторонний треугольник
  46. Периметр равностороннего треугольника
  47. Разносторонний треугольник
  48. Прямоугольник
  49. Свойство прямоугольника
  50. Периметр прямоугольника
  51. Квадрат
  52. Периметр квадрата
  53. Умножение
  54. Свойства умножения
  55. Деление с остатком
  56. Сложение и вычитание дробей с одинаковыми знаменателями
  57. Сложение и вычитание смешанных чисел
  58. Преобразование неправильной дроби в смешанное число
  59. Преобразование смешанного числа в неправильную дробь
  60. Свойства десятичной дроби
  61. Умножение десятичных дробей
  62. Умножение десятичной дроби на натуральное число
  63. Умножение десятичных дробей на 10, 100, 1 000 и т.д
  64.  Умножение десятичных дробей на 0,1, 0,01, 0,001 и т.д
  65. Свойства умножения десятичных дробей
  66. Советуем посмотреть:
  67. Правило встречается в следующих упражнениях:

Умножение и деление десятичных дробей

Сложение вычитание умножение и деление десятичных дробей примеры

20 августа 2011

На прошлом уроке мы научились складывать и вычитать десятичные дроби (см. урок «Сложение и вычитание десятичных дробей»). Заодно оценили, насколько упрощаются вычисления по сравнению с обычными «двухэтажными» дробями.

К сожалению, с умножением и делением десятичных дробей подобного эффекта не возникает. В некоторых случаях десятичная запись числа даже усложняет эти операции.

Для начала введем новое определение. Мы будем встречаться с ним довольно часто, и не только на этом уроке.

Значащая часть числа — это все, что находится между первой и последней ненулевой цифрой, включая концы. Речь идет только о цифрах, десятичная точка не учитывается.

Цифры, входящие в значащую часть числа, называются значащими цифрами. Они могут повторяться и даже быть равными нулю.

Например, рассмотрим несколько десятичных дробей и выпишем соответствующие им значащие части:

  1. 91,25 → 9125 (значащие цифры: 9; 1; 2; 5);
  2. 0,008241 → 8241 (значащие цифры: 8; 2; 4; 1);
  3. 15,0075 → 150075 (значащие цифры: 1; 5; 0; 0; 7; 5);
  4. 0,0304 → 304 (значащие цифры: 3; 0; 4);
  5. 3000 → 3 (значащая цифра всего одна: 3).

Обратите внимание: нули, стоящие внутри значащей части числа, никуда не деваются. Мы уже сталкивались с чем-то подобным, когда учились переводить десятичные дроби в обычные (см. урок «Десятичные дроби»).

Этот момент настолько важен, а ошибки здесь допускают так часто, что в ближайшее время я опубликую тест на эту тему. Обязательно потренируйтесь! А мы, вооружившись понятием значащей части, приступим, собственно, к теме урока.

Умножение десятичных дробей

Операция умножения состоит из трех последовательных шагов:

  1. Для каждой дроби выписать значащую часть. Получатся два обычных целых числа — без всяких знаменателей и десятичных точек;
  2. Умножить эти числа любым удобным способом. Напрямую, если числа невелики, или столбиком. Получим значащую часть искомой дроби;
  3. Выяснить, куда и на сколько разрядов сдвигается десятичная точка в исходных дробях для получения соответствующей значащей части. Выполнить обратные сдвиги для значащей части, полученной на предыдущем шаге.

Еще раз напомню, что нули, стоящие по бокам от значащей части, никогда не учитываются. Игнорирование этого правила приводит к ошибкам.

Задача. Найдите значение выражения:

  1. 0,28 · 12,5;
  2. 6,3 · 1,08;
  3. 132,5 · 0,0034;
  4. 0,0108 · 1600,5;
  5. 5,25 · 10 000.

Работаем с первым выражением: 0,28 · 12,5.

  1. Выпишем значащие части для чисел из этого выражения: 28 и 125;
  2. Их произведение: 28 · 125 = 3500;
  3. В первом множителе десятичная точка сдвинута на 2 цифры вправо (0,28 → 28), а во второй — еще на 1 цифру. Итого нужен сдвиг влево на три цифры: 3500 → 3,500 = 3,5.

Теперь разберемся с выражением 6,3 · 1,08.

  1. Выпишем значащие части: 63 и 108;
  2. Их произведение: 63 · 108 = 6804;
  3. Снова два сдвига вправо: на 2 и 1 цифру соответственно. Всего — снова 3 цифры вправо, поэтому обратный сдвиг будет на 3 цифры влево: 6804 → 6,804. В этот раз нулей на конце нет.

Добрались до третьего выражения: 132,5 · 0,0034.

  1. Значащие части: 1325 и 34;
  2. Их произведение: 1325 · 34 = 45 050;
  3. В первой дроби десятичная точка уходит вправо на 1 цифру, а во второй — на целых 4. Итого: 5 вправо. Выполняем сдвиг на 5 влево: 45 050 → ,45050 = 0,4505. В конце убрали ноль, а спереди — дописали, чтобы не оставлять «голую» десятичную точку.

Следующее выражение: 0,0108 · 1600,5.

  1. Пишем значащие части: 108 и 16 005;
  2. Умножаем их: 108 · 16 005 = 1 728 540;
  3. Считаем цифры после десятичной точки: в первом числе их 4, во втором — 1. Всего — снова 5. Имеем: 1 728 540 → 17,28540 = 17,2854. В конце убрали «лишний» ноль.

Наконец, последнее выражение: 5,25 · 10 000.

  1. Значащие части: 525 и 1;
  2. Умножаем их: 525 · 1 = 525;
  3. В первой дроби выполнен сдвиг на 2 цифры вправо, а во второй — на 4 цифры влево (10 000 → 1,0000 = 1). Итого 4 − 2 = 2 цифры влево. Выполняем обратный сдвиг на 2 цифры вправо: 525, → 52 500 (пришлось дописать нули).

Обратите внимание на последний пример: поскольку десятичная точка перемещается в разных направлениях, суммарный сдвиг находится через разность. Это очень важный момент! Вот еще пример:

Рассмотрим числа 1,5 и 12 500. Имеем: 1,5 → 15 (сдвиг на 1 вправо); 12 500 → 125 (сдвиг на 2 влево). Мы «шагаем» на 1 разряд вправо, а затем — на 2 влево. В итоге, мы шагнули на 2 − 1 = 1 разряд влево.

Деление десятичных дробей

Деление — это, пожалуй, самая сложная операция. Конечно, здесь можно действовать по аналогии с умножением: делить значащие части, а затем «двигать» десятичную точку. Но в этом случае возникает много тонкостей, которые сводят на нет потенциальную экономию.

Поэтому давайте рассмотрим универсальный алгоритм, который чуть-чуть длиннее, но намного надежнее:

  1. Перевести все десятичные дроби в обычные. Если немного потренироваться, на этот шаг у вас будут уходить считанные секунды;
  2. Разделить полученные дроби классическим способом. Другими словами, умножить первую дробь на «перевернутую» вторую (см. урок «Умножение и деление числовых дробей»);
  3. Если возможно, результат снова представить в виде десятичной дроби. Этот шаг тоже выполняется быстро, поскольку зачастую в знаменателе уже стоит степень десятки.

Задача. Найдите значение выражения:

  1. 3,51 : 3,9;
  2. 1,47 : 2,1;
  3. 6,4 : 25,6:
  4. 0,0425 : 2,5;
  5. 0,25 : 0,002.

Считаем первое выражение. Для начала переведем оби дроби в десятичные:

Аналогично поступим со вторым выражением. Числитель первой дроби снова разложится на множители:

В третьем и четвертом примерах есть важный момент: после избавления от десятичной записи возникают сократимые дроби. Однако мы не будем выполнять это сокращение.

Последний пример интересен тем, что в числителе второй дроби стоит простое число. Здесь просто нечего разлагать на множители, поэтому считаем «напролом»:

Иногда в результате деления получается целое число (это я про последний пример). В таком случае третий шаг вообще не выполняется.

Кроме того, при делении часто возникают «некрасивые» дроби, которые нельзя перевести в десятичные. Этим деление отличается от умножения, где результаты всегда представимы в десятичной форме. Разумеется, в таком случае последний шаг опять же не выполняется.

Обратите также внимание на 3-й и 4-й примеры. В них мы намеренно не сокращаем обычные дроби, полученные из десятичных. Иначе это усложнит обратную задачу — представление конечного ответа снова в десятичном виде.

Запомните: основное свойство дроби (как и любое другое правило в математике) само по себе еще не означает, что его надо применять везде и всегда, при каждом удобном случае.

Источник: https://www.berdov.com/docs/fraction/decimal_multiplication/

Умножение десятичных дробей: правила, примеры, решения, как умножать десятичные дроби

Сложение вычитание умножение и деление десятичных дробей примеры

В этой статье мы рассмотрим такое действие, как умножение десятичных дробей.

Начнем с формулировки общих принципов, далее покажем, как умножить одну десятичную дробь на другую и рассмотрим метод умножения столбиком. Все определения будут проиллюстрированы примерами.

Потом мы разберем, как правильно умножить десятичные дроби на обыкновенные, а также на смешанные и натуральные числа (в том числе 100, 10 и др.)

В рамках этого материала мы коснемся только правил умножения положительных дробей. Случаи с отрицательными разобраны отдельно в статьях об умножении рациональных и действительных чисел.

Умножение десятичных дробей: общие принципы

Сформулируем общие принципы, которых надо придерживаться при решении задач на умножение десятичных дробей.

Вспомним для начала, что десятичные дроби есть не что иное, как особая форма записи обыкновенных дробей, следовательно, процесс их умножения можно свести к аналогичному для дробей обыкновенных. Это правило работает и для конечных, и для бесконечных дробей: после их перевода в обыкновенные с ними легко выполнять умножение по уже изученным нами правилам.

Посмотрим, как решаются такие задачи.

Пример 1

Вычислите произведение 1,5 и 0,75.

Решение: для начала заменим десятичные дроби на обыкновенные. Мы знаем, что 0,75 – это 75/100, а 1,5 – это 1510. Мы можем сократить дробь и произвести выделение целой части. Полученный результат 1251000 мы запишем как 1,125.

Ответ: 1,125.

Мы можем использовать метод подсчета столбиком, как и для натуральных чисел.

Пример 2

Умножьте одну периодическую дробь 0,(3) на другую 2,(36).

Решение

Для начала приведем исходные дроби к обыкновенным. У нас получится:

0,(3)=0,3+0,03+0,003+0,003+…=0,31-0,1=0,39=39=132,(36)=2+0,36+0,0036+…=2+0,361-0,01=2+3699=2+411=2411=2611

Следовательно, 0,(3)·2,(36)=13·2611=2633.

Полученную в итоге обыкновенную дробь можно привести к десятичному виду, разделив числитель на знаменатель в столбик:

Ответ: 0,(3)·2,(36)=0,(78).

Если у нас в условии задачи стоят бесконечные непериодические дроби, то нужно выполнить их предварительное округление (см. статью об округлении чисел, если вы забыли, как это делается). После этого можно производить действие умножения с уже округленными десятичными дробями. Приведем пример.

Пример 3

Вычислите произведение 5,382… и 0,2.

Решение

У нас в задаче есть бесконечная дробь, которую нужно предварительно округлить до сотых. Получится, что 5,382…≈5,38. Второй множитель округлять до сотых смысла не имеет. Теперь можно подсчитать нужное произведение и записать ответ: 5,38·0,2=538100·210=1 0761000=1,076.

Ответ: 5,382…·0,2≈1,076. 

Как умножать десятичные дроби столбиком

Метод подсчета столбиком можно применять не только для натуральных чисел. Если у нас есть десятичные дроби, мы можем умножить их точно таким же образом. Выведем правило:

Определение 1

Умножение десятичных дробей столбиком выполняется в 2 шага:

1. Выполняем умножение столбиком, не обращая внимание на запятые.

2. Ставим в итоговом числе десятичную запятую, отделяя ей столько цифр с правой стороны, сколько оба множителя содержат десятичных знаков вместе. Если в результате не хватает для этого цифр, дописываем слева нули.

Разберем примеры таких расчетов на практике.

Пример 4

Умножьте десятичные дроби 63,37 и 0,12 столбиком.

Решение

Первым делом выполним умножение чисел, игнорируя десятичные запятые.

Теперь нам надо поставить запятую на нужное место. Она будет отделять четыре цифры с правой стороны, поскольку сумма десятичных знаков в обоих множителях равна 4. Дописывать нули не придется, т.к. знаков достаточно:

Ответ: 3,37·0,12=7,6044.

Пример 5

Подсчитайте, сколько будет 3,2601 умножить на 0,0254.

Решение 

Считаем без учета запятых. Получаем следующее число:

Мы будем ставить запятую, отделяющую 8 цифр с правой стороны, ведь исходные дроби вместе имеют 8 знаков после запятой. Но в нашем результате всего семь цифр, и нам не обойтись без дополнительных нулей:

Ответ: 3,2601·0,0254=0,08280654.

Как умножить десятичную дробь на 0,001, 0,01, 01, и т.д

Умножать десятичные дроби на такие числа приходится часто, поэтому важно уметь делать это быстро и точно. Запишем особое правило, которым мы будем пользоваться при таком умножении:

Определение 2

Если мы умножим десятичную дробь на 0,1, 0,01 и т.д., в итоге получится число, похожее на исходную дробь, запятая которого перенесена влево на нужное количество знаков. При нехватке цифр для переноса нужно дописывать нули слева.

Так, для умножения 45,34 на 0,1 надо перенести в исходной десятичной дроби запятую на один знак. У нас получится в итоге 4,534.

Пример 6

Умножьте 9,4 на 0,0001.

Решение

Нам придется переносить запятую на четыре знака по количеству нулей во втором множителе, но цифр в первом для этого не хватит. Приписываем необходимые нули и получаем, что 9,4·0,0001=0,00094.

Ответ: 0,00094.

Опиши задание

Для бесконечных десятичных дробей мы пользуемся тем же правилом. Так, к примеру, 0,(18)·0,01=0,00(18) или 94,938…·0,1=9,4938…. и др.

Как перемножить десятичную дробь с натуральным числом

Процесс такого умножения ничем не отличается то действия умножения двух десятичных дробей. Удобно пользоваться методом умножения в столбик, если в условии задачи стоит конечная десятичная дробь. При этом надо учитывать все те правила, о которых мы рассказывали в предыдущем пункте.

https://www.youtube.com/watch?v=NxGhOPVkbDE

Пример 7

Подсчитайте, сколько будет 15·2,27.

Решение

Умножим столбиком исходные числа и отделим два знака запятой.

Ответ: 15·2,27=34,05.

Если мы выполняем умножение периодической десятичной дроби на натуральное число, надо сначала поменять десятичную дробь на обыкновенную.

Пример 8

Вычислите произведение 0,(42) и 22.

Решение

Приведем периодическую дробь к виду обыкновенной.

0,(42)=0,42+0,0042+0,000042+…=0,421-0,01=0,420,99=4299=1433

Далее умножаем:

0,42·22=1433·22=14·223=283=913

Итоговый результат можем записать в виде периодической десятичной дроби как 9,(3).

Ответ: 0,(42)·22=9,(3).

Бесконечные дроби перед подсчетами надо предварительно округлить.

Пример 9

Вычислите, сколько будет 4·2,145….

Решение

Округлим до сотых исходную бесконечную десятичную дробь. После этого мы придем к умножению натурального числа и конечной десятичной дроби:

4·2,145…≈4·2,15=8,60. 

Ответ: 4·2,145…≈8,60.

Как умножить десятичную дробь на 1000, 100, 10 и др

Умножение десятичной дроби на 10, 100 и др. часто встречается в задачах, поэтому мы разберем этот случай отдельно. Основное правило умножения звучит так:

Определение 3

Чтобы умножить десятичную дробь на 1000, 100, 10 и др., нужно перенести ее запятую на 3, 2,1 цифры в зависимости от множителя и отбросить слева лишние нули. Если цифр для переноса запятой недостаточно, дописываем справа столько нулей, сколько нам нужно.

Покажем на примере, как именно это делать.

Пример 10

Выполните умножение 100 и 0,0783.

Решение

Для этого нам надо перенести в десятичной дроби запятую на 2 цифры в правую сторону. Мы получим в итоге 007,83​​​​​Нули, стоящие слева, можно отбросить и записать результат как 7,38.

Ответ: 0,0783·100=7,83.

Пример 11

Умножьте 0,02 на 10 тысяч.

Решение: мы будем переносить запятую на четыре цифры вправо. В исходной десятичной дроби нам не хватит для этого знаков, поэтому придется дописывать нули. В этом случае будет достаточно трех 0. В итоге получилось 0,02000,перенесем запятую и получим 00200,0. Игнорируя нули слева, можем записать ответ как 200.

Ответ: 0,02·10 000=200.

Приведенное нами правило будет работать так же и в случае с бесконечными десятичными дробями, но здесь следует быть очень внимательным к периоду итоговой дроби, так как в нем легко допустить ошибку.

Пример 12

Вычислите произведение 5,32(672) на 1 000.

Решение: первым делом мы запишем периодическую дробь как 5,32672672672…, так вероятность ошибиться будет меньше. После этого можем переносить запятую на нужное количество знаков (на три). В итоге получится 5326,726726… Заключим период в скобки и запишем ответ как 5 326,(726).

Ответ: 5,32(672)·1 000=5 326,(726).

Если в условиях задачи стоят бесконечные непериодические дроби, которые надо умножать на десять, сто, тысячу и др., не забываем округлить их перед умножением.

Как перемножить десятичную дробь с обыкновенной или со смешанным числом

Чтобы выполнить умножение такого типа, нужно представить десятичную дробь в виде обыкновенной и далее действовать по уже знакомым правилам.

Пример 13

Умножьте 0,4 на 356

Решение

​Cначала переведем десятичную дробь в обыкновенную. Имеем: 0,4=410=25.

Далее считаем: 0,4·356=25·236=2315=1815.

Мы получили ответ в виде смешанного числа. Можно записать его как периодическую дробь 1,5(3).

Ответ: 1,5(3).

Если в расчете участвует бесконечная непериодическая дробь, нужно округлить ее до некоторой цифры и уже потом умножать.

Пример 14

Вычислите произведение 3,5678…·23

Решение 

Второй множитель мы можем представить как 23=0,6666…. Далее округлим до тысячного разряда оба множителя. После этого нам будет нужно вычислить произведение двух конечных десятичных дробей 3,568 и 0,667. Посчитаем столбиком и получим ответ:

Итоговый результат нужно округлить до тысячных долей, так как именно до этого разряда мы округляли исходные числа. У нас получается, что 2,379856≈2,380.

Ответ: 3,5678…·23≈2,380

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Источник: https://Zaochnik.com/spravochnik/matematika/dejstvitelnye-ratsionalnye-irratsionalnye-chisla/umnozhenie-desjatichnyh-drobej/

Десятичные дроби

Сложение вычитание умножение и деление десятичных дробей примеры

Определение

Десятичная дробь — дробь, которая представляет собой способ представление числа в виде записи числа с запятой, где цифры перед запятой называются целой частью, а цифры после запятой – дробной частью (десятичной частью).

Десятичные дроби получают из записи обыкновенных дробей со знаменателем 10, 100, 1000 и так далее. Например, десятичные дроби:

4,56 – четыре целых пятьдесят шесть сотых 18,234 – восемнадцать целых двести тридцать четыре тысячных

78,6 – семьдесят восемь целых шесть десятых

Чтение десятичных дробей

Чтение десятичной части (десятых, сотых и так далее) зависит от количества цифр после запятой. Если цифра одна, то читают – десятых (в числе десять — один нуль, это соответствует одной цифре). Если две цифры после запятой, то читают – сотых (в сотне два нуля).

Десятичные дроби получаются из обыкновенных дробей:

Сложение (вычитание) десятичных дробей

Как складывать десятичные дроби?

Чтобы сложить (вычесть) в столбик две десятичные дроби нужно:

  1. Записать их друг под другом так, чтобы при записи запятая оказалась под запятой и соответствующий разряд под соответствующим.
  2. Уравнять количество знаков после запятой, добавляя недостающие нулями.
  3. Выполнить сложение (вычитание) в столбик, не обращая внимания на запятую.
  4. Поставить запятую под запятыми.

Если складывают (вычитают) целое число и десятичную дробь, то нужно поставить запятую после целого числа и приписать необходимое количество нулей после запятой.

Пример №1. Запись, где запятая под запятой и соответствующий разряд под соответствующим.

34,145 + 5,678 = 39,823

34,145
  5,678
39,823

Пример №2. Запись, где также запятая под запятой, а во втором числе дописан нуль, чтобы уравнять количество знаков после запятой.

9,235 – 2,34 = 6,895

9,235
2,340
6,895

Пример №3. В первом слагаемом нет десятичной части, поэтому, после числа 56 поставили запятую и добавили нужное количество нулей.

56 + 12,74 = 68,74

56,00
12,74
68,74

Умножение десятичных дробей на 10, 100, 1000…

Как умножить десятичную дробь на десять, сто, тысячу?

Чтобы умножить десятичную дробь на 10, 100, 1000 и так далее, нужно перенести запятую вправо на столько цифр, сколько нулей у множителя. Умножение в данном случае выполняется в строчку.

Пример №6. 2,456 × 10 = 24,56 Запятую в десятичной дроби перенесли вправо на 1 цифру, так как у 10 один нуль.

Пример №7. 0,45678 × 100 = 45,678 Запятую перенесли вправо на 2 цифры, так как у 100 два нуля. Нуль, стоящий в начале десятичной дроби, убрали, так как впереди целой части, отличной от нуля он не пишется.

Пример №8.  9,46 × 1000 = 9460 в данном случае при переносе запятой на три цифра не хватило одной, поэтому в конце числа приписали нуль, и в ответе получилось целое число.

Умножение десятичной дроби на разрядную единицу 0,1; 0,01; 0,001…

Как умножить десятичную дробь на 0,1; 0,01; 0,001?

При умножении десятичной дроби на разрядную единицу 0,1; 0,01; 0,001 (и так далее) нужно перенести запятую на столько цифр влево, сколько цифр в данной разрядной единице после запятой. Умножение обычно выполняется в строчку устно.

Пример №9. 983,7821 × 0,01= 9,837821 Переносим запятые влево на 2 цифры, так как в числе 0,01 две цифры после запятой.

Пример №10. 8,7654 × 0,1 = 0,87654 Перенесли на 1 цифру влево, так как в числе 0,1 одна цифра после запятой. В данном случае перед 8 появился нуль, так как при переносе запятой слева цифр не оказалось.

Пример №11. 7,98 × 0,0001 = 0,000798 При переносе влево на 4 цифры не хватило трех, поэтому впереди поставили нули, а также нуль образуется и в целой части.

Деление десятичной дроби на 10, 100, 1000…

Как разделить десятичную дробь на 10, 100, 1000?

При делении десятичной дроби на 10,100, 1000 и так далее нужно перенести запятую на столько цифр влево, сколько нулей в данном числе. Деление выполняется в строчку устно.

Пример №15. 45,982 : 10 = 4,5982 Перенесли запятую влево на 1 цифру, так как у 10 один нуль.

Пример №16. 134,987 : 1000 = 0,134987 Перенесли запятую на три цифры влево, так как у 1000 три нуля. В целой части поставили нуль, так как цифр не хватило.

Пример №17. 7,234 : 100 = 0,07234 Перенесли запятую влево на две цифры. Так как цифр не хватало, то недостающие заменили нулями.

Деление десятичной дроби на разрядную единицу 0,1; 0,01; 0,001…

Как разделить десятичную дробь на 0,1; 0,01; 0,001?

При делении десятичной дроби на разрядную единицу 0,1; 0,01; 0,001 и так далее нужно перенести запятую на столько цифр вправо, сколько цифр в данной разрядной единице после запятой. Деление обычно выполняется в строчку устно.

Пример №18. 6,5746 : 0,1 = 65,746 Перенос запятой на 1 цифру вправо, так как в числе 0,1 одна цифра после запятой.

Пример №19. 41,234 : 0,01 = 4123,4 Перенос запятой на 2 цифры вправо, так как в числе 0,01 две цифры после запятой.

Пример №20. 56,91 : 0,001 = 56910 При переносе запятой на три цифры вправо приписали один нуль, так как одной цифры не хватило.

✍️ Алла Василевская |

Источник: https://spadilo.ru/desyatichnye-drobi/

Основные правила математики с примерами. 5 класс – Сайт учителя математики Косыхиной Н.В

Сложение вычитание умножение и деление десятичных дробей примеры

› 5 Класс › Основные правила математики с примерами. 5 класс

  • Натуральные числа
  • Сравнение натуральных чисел
  • Свойства сложения
  • Формула пути
  • Корень уравнения
  • Правила решения уравнений
  • Отрезок, прямая, луч
  • Угол, биссектриса угла
  • Углы: развернутый, прямой, острый, тупой
  • Многоугольники. Равные фигуры
  • Треугольники: остроугольный, прямоугольный, тупоугольный
  • Треугольники: равнобедренный, равносторонний, разносторонний
  • Прямоугольник. Квадрат. Периметр
  • Умножение. Свойства умножения
  • Деление. Деление с остатком
  • Площадь. Площадь квадрата, прямоугольника
  • Объем. Объем прямоугольного параллелепипеда, куба
  • Дроби: правильная, неправильная, сравнение дробей
  • Сложение и вычитание дробей с одинаковыми знаменателями
  • Сложение и вычитание смешанных чисел
  • Преобразование неправильной дроби в смешанное число
  • Преобразование смешанного числа в неправильную дробь
  • Десятичные дроби: свойства, сравнение, округление
  • Десятичные дроби: сложение, вычитание
  • Десятичные дроби: умножение, деление
  • Среднее арифметическое
  • Процент

Натуральные числа

Числа 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 и т. д., которые используют при счете предметов, называют натуральными.

Сравнение натуральных чисел

Число меньше любого натурального числа.

03559

Свойства сложения

Переместительный закон: 

15+10=10+15

Сочетательный закон:

(23+15)+25=23+(15+25)

Формула пути

S=V·t,где S — пройденный путь, V — скорость движения, t — время, за которое пройден путь S

= 50км,  = 2ч,  = 25км/ч

,   50км = 25км/ч· 2ч

,   25км/ч = 50км : 2ч

,   2ч = 50км : 25км/ч

Корень уравнения

Корнем (решением) уравнения называют число, которое при подстановке его вместо буквы превращает уравнение в верное числовое равенство.

2·x+10=16

x = 3 – корень, так как 2·3+10=16

Решить уравнение — это значит найти все его корни или убедиться, что их вообще нет.

Правила решения уравнений

  • Чтобы найти неизвестное слагаемое, надо из суммы вычесть известное слагаемое.

20слагаемое+xслагаемое=100суммаx = 100 – 20x = 80

  • Чтобы найти неизвестное уменьшаемое, надо к разности при­бавить вычитаемое.

xуменьшаемое–10вычитаемое=40разностьx = 40 + 10x = 50

  • Чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность.

50уменьшаемое–xвычитаемое=40разностьx = 50 – 40x = 10

  • Чтобы найти неизвестный множитель, надо произведение раз­делить на известный множитель.

xмножитель·7множитель=56произведениеx = 56 : 7x = 8

  • Чтобы найти неизвестное делимое, надо делитель умножить на частное.

xделимое:8делитель=72частноеx = 72 : 8x = 9

  • Чтобы найти неизвестный делитель, надо делимое разделить на частное.

42делимое:xделитель=7частноеx = 42 : 7x = 6

Отрезок

Отрезок – часть прямой, ограниченная двумя точками(концами) и все точки между этими концами(внутренние точки отрезка)

Свойство длины отрезка

Если на отрезке отметить точку , то длина отрезка равна сумме длин отрезков и .

Равные отрезки

Два отрезка называют равными, если они совмещаются при наложении.

Свойство прямой

Через две точки проходит только одна прямая.

Измерить отрезок

Измерить отрезок означает подсчитать, сколько единичных отрезков в нем помещается

Ломаная

Ломаная — геометрическая фигура, состоящая из отрезков, последовательно соединенных друг с другом

Луч

Луч (полупрямая) — это геометрическая фигура, часть прямой, состоящая из точки(начала луча) и всех точек прямой, лежащих по одну сторону от начала луча.В названии луча присутствуют две буквы, например, . Причем первая буква всегда обозначает точку начала луча, поэтому менять местами буквы нельзя.

Угол

Фигуру, образованную двумя лучами, имеющими общее начало, называют углом.

Равные углы

Два угла называют равными, если они совмещаются при наложении.

Свойство величины угла

Если между сторонами угла ∠ провести луч , то градусная мера  ∠ равна сумме градусных мер углов ∠ и ∠, то есть ∠ = ∠+ ∠.

Биссектриса угла

Луч, который делит угол на два равных угла, называется биссектрисой угла.

Развернутый угол

Угол, стороны которого образуют прямую, называют развернутым. Градусная мера развернутого угла равна 180°.

Прямой угол

Угол, градусная мера которого равна 90°, называют прямым.

Острый угол

Угол, градусная мера которого меньше 90°, называют острым.

Тупой угол

Угол, градусная мера которого больше 90°, но меньше 180°, называют тупым.

Равные многоугольники

Два многоугольники называют равными, если они совмещаются при наложении.

Равные фигуры

Две фигуры называют равными, если они совмещаются при наложении.

Остроугольный треугольник

Если все углы треугольника острые, то его называют остроугольным треугольником.

Прямоугольный треугольник

Если один из углов треугольника прямой, то его называют прямоугольным треугольником.

Тупоугольный треугольник

Если один из углов треугольника тупой, то его называют тупоугольным треугольником.

Равнобедренный треугольник

Если две стороны треугольника равны, то его называют равнобедренным треугольником.

Равносторонний треугольник

Если три стороны треугольника равны, то его называют равносторонним треугольником.

Периметр равностороннего треугольника

Если сторона равностороннего треугольника равна , то его периметр вычисляют по формуле

Разносторонний треугольник

Если три стороны треугольника имеют разную длину, то его называют разносторонним треугольником.

Прямоугольник

Если в четырехугольнике все углы прямые, то его называют прямоугольником.

Свойство прямоугольника

Противоположные стороны прямоугольника равны.

Периметр прямоугольника

Если соседние стороны прямоугольника равны и , то его периметр вычисляют по формуле

Квадрат

Прямоугольник, у которого все стороны равны, называют квадратом.

Периметр квадрата

Если сторона квадрата равна , то его периметр вычисляют по формуле .

Умножение

  • Произведением числа на натуральное число , которое не равно 1, называют сумму, состоящую из  слагаемых, каждый из которых равен . В равенства    числа  и называют множителями,  а число и запись  — произведением.

  • Если один из двух множителей равен 1, то произведение равно второму множителю.
  • Если один из множителей равен нулю, то произведение равно нулю.
  • Если произведение равно нулю, то хотя бы один из множителей равен нулю.

Свойства умножения

  • Переместительный закон умножения:
  • Сочетательный закон умножения: 
  • Распределительное свойство умножения относительно сложения:  

2·(3+10) = 2·3 + 2·103·11 + 3·4 = 3·(11 + 4)

  • Распределительное свойство умножения относительно вычитания:

2·(15–7) = 2·15 – 2·73·10 – 3·4 = 3·(10 – 4)

Для натуральных чисел равенство   является правильным, если является правильным равенство

15 : 5 = 3 -правильное равенство, так как  равенство 5 · 3 = 15 верное

В равенстве    число называют делимым, число — делителем, число и   запись  – частным от деления, отношением, долей.

На ноль делить нельзя.

Для любого натурального числа  правильными являются равенства:

,

Деление с остатком

, где  — делимое, — делитель, — неполное частное, — остаток, .

154делимое=50делитель · 3неполное частное + 4остаток,    4

  • Из двух дробей с одинаковыми числителями больше та, знаменатель которого меньше, и меньшая та, знаменатель которой больше.
  • Все правильные дроби меньше единицы, а неправильные — больше или равны единице.
  • Любая неправильная дробь больше любой правильной дроби.

Сложение и вычитание дробей с одинаковыми знаменателями

  • Чтобы найти сумму двух дробей с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить тот же.
  • Чтобы найти разность двух дробей с одинаковыми знаменателями, надо из числителя уменьшаемого вычесть числитель вычитаемого, а знаменатель оставить тот же.

Сложение и вычитание смешанных чисел

  • Чтобы найти сумму двух смешанных чисел, надо отдельно сложить их целые и дробные части.
  • Чтобы найти разность двух смешанных чисел, надо от целой и дробной части уменьшаемого вычесть соответственно целую и дробную части вычитаемого.

Преобразование неправильной дроби в смешанное число

Чтобы неправильную дробь, числитель которой не делится нацело на знаменатель, преобразовать в смешанное число, нужно

  • числитель разделить на знаменатель;
  • полученное неполное частное записать как целую часть смешанного числа, а остаток — как числитель его дробной части.

227= смешанное число? 7322–211  227=317      

Преобразование смешанного числа в неправильную дробь

Чтобы преобразовать смешанное число в неправильную дробь нужно

  • целую часть числа умножить на знаменатель дробной части;
  • к полученному произведению прибавить числитель дробной части;
  • эту сумму записать как числитель неправильной дроби;
  • в его знаменателе записать знаменатель дробной части смешанного числа.

523= неправильная дробь?523=5*3+23=15+23=173

Свойства десятичной дроби

Если к десятичной дроби справа приписать любое количество нулей, то получим дробь, равную данной.

Значение дроби, которая заканчивается нулями, не изменится, если последние нули в его записи отбросить.

2,23  = 2,230 = 2,230000005,50000=5,50000=5,5

Из двух десятичных дробей больше та, у которой целая часть больше.

Чтобы сравнить две десятичные дроби с равными целыми частями и разным количеством цифр после запятой, надо

  • с помощью приписывания нулей справа уравнять количество цифр в дробных частях,
  • после чего сравнить полученные дроби поразрядно.

Сравнить 5,03 и 5,0375.5,03⏟2=5,0300⏟4    и     5,0375⏟4  ; 5,0300 

Источник: https://blackseaweb.ru/5-klass/pravila-po-matematike-5-klass/

Умножение десятичных дробей

Сложение вычитание умножение и деление десятичных дробей примеры

Умножение и деление отличается от сложения и вычитание десятичных дробей.

Умножение десятичной дроби на натуральное число

Чтобы умножить десятичную дробь на натуральное число, надо:

1) умножить их как натуральные числа, не обращая внимание на запятую;

2) в полученном произведении отделить запятой справа столько цифр, сколько их стоит после запятой у умножаемой дроби.

Примеры: 

1) 2,85 = 14,0 = 14.

 2) 0,463 = 1,38.

3) 110,005 = 0,055.

×11
0005
55
0055

Чтобы перемножить две десятичные дроби, надо:

1) записать дроби в столбик, как  два натуральных числа не обращая внимание на запятые;

2) умножить их как натуральные числа, не обращая внимание на запятые;

3) в полученном произведении отделить запятой справа столько цифр, сколько их стоит после запятых в обоих множителях вместе.

Примеры:

1) 2,351,2 = 2,820 = 2,82.

×235
12
470
235
2820

2) 67,34,6 = 309,58

×673
46
4038
2692
30958

3) 0,00840,31 = 0,002604.

×00084
031
84
252
0002604

4) 1,040,005 = 0,00520 = 0,0052.

×104
0005
520
000520

Умножение десятичных дробей на 10, 100, 1 000 и т.д

Чтобы умножить десятичную дробь на 10, 100, 1 000 и т. д., надо в этой дроби перенести запятую вправо соответственно на 1, 2, 3 и т. д. цифры.

Примеры:

1) 3,5610 = 35,6;

2) 45,678100 = 4 567,8;

3) 3,561 000 = 3 560;

4) 0,4567810 000 = 4567,8;

5) 0,041 000 = 40;

6) 0,00065100 = 0,065.

Обратите внимание:

1) если цифр после запятой меньше, чем цифр, на которые нужно перенести запятую, справа у дроби добавляем нули (в итоге получится натуральное число);

2) если слева у десятичной дроби были нули и мы перенесли запятую вправо, то нули, стоящие слева, не пишем.

 Умножение десятичных дробей на 0,1, 0,01, 0,001 и т.д

Чтобы умножить десятичную дробь на 0,1; 0,01; 0,001 и т. д., надо в этой дроби перенести запятую влево соответственно на 1, 2, 3 и т. д. цифры.

Примеры:

1) 56,80,1 = 5,68;

2) 678,30,01 = 6,783;

3) 4832,60,001 = 4,8326;

4) 56,40,0001 = 0,00564.

Обратите внимание: если цифр до запятой меньше, чем цифр, на которые нужно перенести запятую, слева у дроби добавляем нули.

Свойства умножения десятичных дробей

1) – переместительное свойство умножения,

2) – сочетательное свойство умножения,

3) – распределительное свойство умножения относительно сложения.

4) – распределительное свойство умножения относительно вычитания.

Поделись с друзьями в социальных сетях:

Советуем посмотреть:

Десятичная запись дробных чисел

Сравнение десятичных дробей

Сложение и вычитание десятичных дробей

Приближенные значения чисел. Округление чисел

Деление десятичных дробей

Среднее арифметическое

Десятичные дроби

Правило встречается в следующих упражнениях:

5 класс

Задание 1349, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1374, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1396, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1434, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1436, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Упражнение 915, Мерзляк, Полонский, Якир, Учебник

Упражнение 938, Мерзляк, Полонский, Якир, Учебник

Упражнение 1102, Мерзляк, Полонский, Якир, Учебник

Упражнение 1140, Мерзляк, Полонский, Якир, Учебник

Упражнение 1216, Мерзляк, Полонский, Якир, Учебник

6 класс

Задание 85, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 103, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 106, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 154, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 209, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 224, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 284, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 358, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 423, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 441, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

7 класс

Задание 455, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 456, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

© budu5.com, 2021

Пользовательское соглашение

Copyright

Нашли ошибку?

Связаться с нами

Источник: https://budu5.com/manual/chapter/1224

О ваших правах
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: