Свойства действия умножения словами

Содержание
  1. Правила умножения и деления для начальной школы примеры
  2. Что такое умножение? Это умное сложение
  3. Да какая разница?
  4. Что важнее – умножение или сложение?
  5. Математические действия с нулем
  6. Умножение и деление на единицу
  7. Вычисления с дробями, степенями и сложными функциями
  8. Главные правила по теме
  9. Свойства действия умножения словами
  10. Методика ознакомления с переместительным и сочетательным свойствами умножения
  11. Умножение. Переместительное свойство умножения
  12. Свойства умножения — СПИШИ У АНТОШКИ
  13. Математика: переместительное свойство умножения
  14. Умножение
  15. Умножение и его свойства
  16. Умножение, сложение, вычитание и деление целых чисел: основные свойства
  17. Математика
  18. Распределительное свойство умножения – правила и примеры применения
  19. Ключевые особенности
  20. Основные математические возможности
  21. Правила вычитания
  22. Использование двух и более слагаемых
  23. Умножение нуля
  24. Распределительное свойство относительно разности
  25. Манипуляции с натуральным числом
  26. Умножение, сложение, вычитание и деление целых чисел: основные свойства
  27. Сложение целых чисел. Основные свойства
  28. Умножение целых чисел. Основные свойства
  29. Вычитание целых чисел. Основные свойства
  30. Деление целых чисел. Основные свойства
  31. Законы математики
  32. Переместительный закон сложения
  33. Сочетательный закон сложения
  34. Переместительный закон умножения
  35. Сочетательный закон умножения
  36. Распределительный закон умножения
  37. Задания для самостоятельного решения
  38. Свойства арифметических действий
  39. Сочетательный закон сложения
  40. Чтобы прибавить к какому-либо числу сумму нескольких чисел, можно прибавить отдельно каждое слагаемое одно за другим
  41. Свойство вычитания суммы из числа
  42. Свойство сложения разности чисел
  43. Свойство вычитания разности из числа
  44. Умножение числа на произведение чисел
  45. Умножение числа на сумму чисел
  46. Распределительный закон умножения для разности чисел
  47. Деление суммы на число
  48. Деление разности на число
  49. Деление произведения на число
  50. Деление числа на произведение
  51. Укажем еще следующее свойство деления:

Правила умножения и деления для начальной школы примеры

Свойства действия умножения словами

После того, как выучена таблица умножения, школьникам объясняют правила умножения и деления, учат использовать их при вычислении математических выражений.

Что такое умножение? Это умное сложение

При сложении и вычитании, умножении и делении чисел в простых выражениях у детей не возникает трудностей:

  • 5 × 3 = 15;
  • 86 – 9 = 77;
  • 81 : 9 = 9.

В таких вычислениях необходимо только знать правила сложения и вычитания и таблицу умножения.
Когда начинаются более сложные упражнения, примеры состоят из двух и более действий, да еще и со скобками, при решении у детей появляются ошибки. И главная из них – неправильный порядок действий.

Математика: переместительное свойство умножения

Да какая разница?

Действительно, настолько ли это важно – какое действие в примере выполнить первым, какое вторым?

10 – 5 + 2 = ?

Если мы будем выполнять действия по порядку, получим:

Попробуем иначе:

Получили два разных ответа. Но так быть не должно, следовательно, порядок выполнения действий имеет значение. Тем более, если в выражении имеются скобки:

25 – (18+2) = ?

Пробуем решить двумя способами:

  1. 25 – 18 + 2 = 9;
  2. 25 – 20 = 5.

Ответы разные, а для того чтобы определить порядок действий, в выражении стоят скобки – они показывают, какое действие нужно выполнить первым. Значит, правильным будет такое решение:

  1. 18 + 2 = 20;
  2. 25 – 20 = 5.

Другого решения у ответа у примера быть не должно.

Итак:

Что важнее – умножение или сложение?

При решении примеров
Расставь порядок действий.
Умножить или разделить – на первом месте.

Для выражений, в которых присутствуют не сложение либо вычитание, а умножение или деление, действует то же правило: все действия с числами выполняются по порядку, начиная с левого:

81 : 9 х 2 = ?

Сложнее случай – когда в одной задаче встречаются умножение или деление со сложением или вычитанием. Каков порядок вычислений тогда?

Рассмотрим пример:

8 : 2 + 2 = ?

Если выполнять все действия по порядку, сначала деление, затем сложение. В итоге получим:

Значит, пример решен правильно. А если в нем будут скобки?

8 : (2 + 2) = ?

То, что заключено в скобки, всегда в приоритете. Для того они и стоят в выражении. Поэтому порядок вычислений в подобных выражениях будет следующим:

  1. Раскрываем скобки. Если их несколько, делаем вычисления для каждых.
  2. Умножение либо деление.
  3. Вычисляем конечный результат, выполняя действия слева направо.

Пример:
81 : 9 + (6 – 2) + 3 = ?

  1. 6 – 2 = 4;
  2. 81 : 9 = 9;
  3. 9 + 4 = 13;
  4. 13 + 3 = 16.

81 : 9 + (6 – 2) + 3 = 16.

А что будет приоритетным: умножение — или деление, вычитание — или сложение, если оба действия встречаются в задаче? Ничего, они равны, в таком случае действует первое правило – действия производятся одно за другим, начиная слева.

Алгоритм решения выражения:

  1. Анализируем задачу – есть ли скобки, какие математические действия нужно будет выполнить.
  2. Выполняем вычисления в скобках.
  3. Делаем умножение и деление.
  4. Выполняем сложение и вычитание.

Пример:

28 : (11 – 4) + 18 – (25 – 8) = ?

Порядок вычисления:

  1. 11 – 4 = 7;
  2. 25 – 8 = 17;
  3. 28 : 7 = 4;
  4. 4 + 18 = 22;
  5. 22 – 17 = 5.

Ответ: 28 : (11 – 4) + 18 – (25 – 8) = 5.

Важно! Если в выражении есть буквенные обозначения, порядок действий остается прежним.

Математические действия с нулем

Круглый нуль такой хорошенький,
Но не значит ничегошеньки.

В примерах нуль как число не встречается, но он может быть результатом какого-либо промежуточного действия, например:

5 × (8 : 2 – 4) = ?

  1. 8 : 2 = 4;
  2. 4 – 4 = 0;
  3. 5 × 0 = ?

При умножении на 0 правило гласит, что в результате всегда получится 0. Почему? Объяснить можно просто: что такое умножение? Это одно и то же число, сложенное с себе подобным несколько раз. Иначе:

0 × 5 = 0 + 0 + 0 + 0 + 0 = 0;

Деление на 0 бессмысленно, а деление нуля на любое число даст в результате всегда 0:

0 : 5 = 0.

Да и как может быть иначе, когда делить-то нечего? Если у вас нет яблок, поделиться с друзьями вам нечем.

Почему нельзя делить на ноль

Напомним другие арифметические действия с нулем:

Умножение и деление на единицу

Математические действия с единицей отличаются от действий с нулем. При умножении или делении числа на 1 получается само первоначальное число:

7 × 1 = 7;

7 : 1 = 7.

Конечно, если у вас есть 7 друзей, и каждый подарил вам по конфете, у вас будет 7 конфет, а если вы их съели в одиночестве, то есть поделились лишь с самим собой, то все они и оказались в вашем желудке.

Вычисления с дробями, степенями и сложными функциями

Это сложные случаи вычислений, которые не рассматриваются в рамках начальной школы.

Умножение простых дробей друг на друга не представляется сложными, достаточно лишь перемножить числитель на числитель, а знаменатель – на знаменатель.
Пример:

\({{2}\over{5}} × {{3}\over{8}}\) = ?

  1. 2 × 3 = 6 — числитель
  2. 5 × 8 = 40 — знаменатель

\({{2}\over{5}} × {{3}over\{8}} = {{6}over\{40}}\)

После сокращения получаем:\({{6}over\{40}}\) = \({{3}over\{20}}\).

Деление простых дробей не так сложно, как кажется на первый взгляд. Достаточно лишь преобразовать задачу – превратить ее в пример с умножением. Сделать это просто – нужно перевернуть дробь так, чтобы знаменатель стал числителем, а числитель – знаменателем.
Пример:

\({{2}\over{8}}={{2}\over{5}} : {{3}\over{5}}\)=?\({{2}\over{8}} : {{3}\over{5}} = {{2}\over{8}} × {{5}\over{3}}\) \({{2}\over{8}} : {{3}\over{5}} = {{10}\over{24}}={{5}\over{12}}\)

Если в задаче встречается число, представленное в виде степени, его значение вычисляется прежде всех остальных (можете представить, что оно заключено в скобки – а действия в скобках выполняются первыми).
Пример:

(5² – 7) : 3 = ?

  1. 5² = 5 х 5 = 25;
  2. 25 – 7 = 18;
  3. 18 : 3 = 6.

(5² – 7) : 3 = 6.

Преобразовав число, представленное в виде степени, в обычное выражение с действием умножения, решить пример оказалось просто: сначала умножение, затем вычитание (потому что в скобках) и деление.

  • Действия с корнями, логарифмами, функциями

Поскольку такие функции изучаются только в рамках старшей школы, рассматривать их мы не будем, достаточно только сказать, что они, как и в случае со степенями, имеют приоритет при вычислении: сначала находится значение данного выражения, затем порядок вычислений обычный – скобки, умножение с делением, далее по порядку слева направо.

Главные правила по теме

Говоря о главных и неглавных математических действиях, нужно сказать, что четыре основных действия можно свести к двум: сложение и умножение. Если вычитание и деление представляется для школьников сложным, правила сложения и умножения они запоминают быстрее. Действительно, выражение 5 – 2 можно записать иначе:

2 + х = 5.

Аналогично:

8 : 2 = у × 2 = 8.

В случаях с умножением действуют правила, схожие со свойствами сложения: от перестановки множителей произведение не изменится:

5 × 4 = 4 × 5.

При решении сложных задач первое действие — то, которое выделено скобками, затем — деление или умножение, потом все остальные действия по порядку.
Когда нужно решить примеры без скобок, вначале выполняется умножение или деление, далее — вычитание либо сложение.

Источник: http://razvitiedetei.info/razvitie-shkolnika/pravila-umnozheniya-i-deleniya.html

Свойства действия умножения словами

Свойства действия умножения словами

Для любых натуральных чисел верны равенства: m · (a + b + .) = m · a + m · b + . (a + b + .) · m = a · m + b · m + .

выражающие распределительный закон умножения: Чтобы число умножить на сумму чисел, можно это число умножить отдельно на каждое слагаемое и полученные произведения сложить.

Чтобы сумму чисел умножить на число, можно каждое слагаемое отдельно умножить на число и полученные произведения сложить.

Распределительный закон умножения можно легко проверить при подсчёте двумя способами числа звёздочек, представленных на рисунке: Первый: в каждом ряду расположено 3 жёлтых и 5 зелёных звёздочек, то есть всего в каждом ряду (3 + 5) звёздочек. В четырёх рядах всего (3 + 5) · 4 звёздочек.

Второй: жёлтые звёздочки расположены в четыре ряда по 3 звёздочки в каждом, то есть всего жёлтых звёздочек 3 · 4, а зелёных – 5 · 4.

Кроме того, для любых натуральных

Методика ознакомления с переместительным и сочетательным свойствами умножения

Выясняется, что означают в данном случае числа 6, 2 и 12.

Сочетательное св-во: в учебнике Моро изучение сочетательного свойства умножения, которое представлено как умножение числа на произ­ведение, предшествует изучению темы «Умножение на числа, оканчивающиеся нулями».

Это позволяет познакомить учащихся с новым способом действия при выполнении устных вычислений для данного случая умножения и обосновать ту форму записи «в стол­бик», которая используется при умножении чисел, оканчивающих­ся нулями.

При знакомстве

Умножение.

Переместительное свойство умножения

А это в математике не принято. Поэтому договорились, что: a * 1 = a. Если b = 0, то договрились считать, что: a * 0 = 0.

В частности, 0 * 0 = 0. Рассмотрим произведения 1 * a и 0 * a, где a − натуральное число, отличное от 1. Имеем: $$ 1 * a = \underbrace{1 + 1 + 1 + . + 1}_{a-слагаемых} = a, $$ $$ 0 * a = \underbrace{0 + 0 + 0 + . + 0}_{a-слагаемых} = 0.

$$ Теперь можно сделать следующие выводы.

Если один из двух множителей равен 1, то произведение равно другому множителю: a * 1 = 1 * a = a Если один из двух множителей равен нулю, то произведение равно нулю: a * 0 = 0 * a = 0 Произведение двух чисел, отличных от нуля, нулем быть не может.

Если произведение равно нулю, то хотя бы один из множителей равен нулю.

Количество квадратов на рисунке 140 мы подсчитали так: 5 + 5 + 5 = 5 * 3 = 15. Однако этот полсчет можно было сделать и другим способом.

Прямоугольник разделен на пять столбцов, в каждом из которых есть три квадрата.

Свойства умножения — СПИШИ У АНТОШКИ

Переместительное свойство умножения натуральных чисел:при перестановке множителей значение произведения не меняется.Это переместительное свойство умножения. Если его записать буквами, то оно выглядит так:m • n = n • m .Рассмотрим пример, подтверждающий справедливость переместительного свойства умножения двух натуральных чисел.

Отталкиваясь от смысла умножения двух натуральных чисел, вычислим произведение чисел 2 и 6, а также произведение чисел 6 и 2, и проверим равенство результатов умножения.

Произведение чисел 6 и 2 равно сумме 6+6, из таблицы сложения находим 6+6=12.

А произведение чисел 2 и 6 равно сумме 2+2+2+2+2+2, которая равна 12 (при необходимости смотрите материал статьи сложение трех и большего количества чисел).

Следовательно, 6·2=2·6.2. Сочетательное свойство умножения натуральных чисел:умножить данное число на данное произведение двух чисел – это то же самое, что умножить

Математика: переместительное свойство умножения

Любые примеры с большими числами записывать и решать их, используя переместительное свойство умножения, удобнее. Объяснить закон можно просто: любой пример на умножение можно записать в виде сложения: 2 · 3 = 2 + 2 + 2 3 · 2 = 3 + 3.

Если число нужно умножить на произведение чисел, произвести вычисление можно различными способами:

  1. раскрыть скобки, перемножить первые два числа, затем итог умножить на оставшееся.
  2. получить произведение в скобках, затем умножить оставшееся число на итог;

Это сочетательный закон умножения:

Умножение

Сколько было котят? Это значит, что котят было 4 раза по 2.

2 + 2 + 2 + 2 = 4 (к.) Заменяем сложение умножением и получаем: 2 • 4 = 8 (к.) Например, решим задачу: В магазине было 8 котят и 2 лисички.

Во сколько раз котят было больше, чем лисичек?

Во сколько раз лисичек было меньше, чем котят? Чтобы ответить на эти вопросы, нужно узнать, сколько раз по 2 содержится в 8?

8 : 2 = 4 (раза) Значит, котят в 4 раза больше, чем лисичек, а лисичек в 4 раза меньше, чем котят. Поделись с друзьями в социальных сетях: 2 класс , , , , , , , , , , 3 класс , , , , , , , , , , 5 класс , © 2021 — budu5.com, Буду отличником!

Умножение и его свойства

От перестановки множителей произведение не изменяется.

  1. Например:
  2. 7 * 6 * 5 = 5 * 6 * 7 = 210
  3. а * Ь * с = с * Ь * а

Правило.

  1. a * (b + c) = ab + ac
  2. Например:
  3. 7 * (6 + 5) = 7 * 6 + 7 * 5 = 77

Распределительный закон распространяется и на действие вычитания.

  1. Например:
  2. 7 * (6 — 5) = 7 * 6 — 7 * 5 = 7

Законы умножении распространяются на любое количество множителей в числовом или буквенном выражении. Распределительный закон умножения используется для вынесения общего множителя за скобки.

Правило. Чтобы преобразовать сумму (разность) в произведение, достаточно вынести за скобки одинаковый множитель слагаемых, а оставшиеся множители записать в скобках суммой (разностью).

Умножение, сложение, вычитание и деление целых чисел: основные свойства

Согласно свойству ассоциативности справедливы равенства: 64+81+(-49)=64+81+(-49)=64+81+(-49); (128+(-75))+96=128+((-75)+96). 1. Число нуль — нейтральный по сложению элемент. Прибавление нуля к любому целому числу не меняет этого числа.

a+0=a 2. Сумма любого целого числа и противоположного ему числа равна нулю.

a+(-a)=0 Как и в случае со сложением, все свойства умножения натуральных чисел переносятся на целые числа.

Для умножения также действуют переместительный и сочетательный (коммутативный и ассоциативный) законы.

От перемены мест множителей произведение не меняется.

a·b=b·a Приведем пример. Очевидно, что произведение целых чисел 2·3 эквивалентно произведению 3·2. Сочетательное свойство для умножения эквивалентно сочетательному свойству сложения.

В буквенном виже оно записывается следующим образом: a·(b·c)=(a·b)·c a, b, c — произвольные целые числа. Примечание: данное свойство применимо и для большего количества множителей.

Математика

Произведение есть число, которое получается от умножения. Оно есть сумма равных слагаемых. Множимое и множитель вместе называются производителями.

При умножении целых чисел одно число увеличивается во столько раз, сколько в другом содержится единиц. Знак умножения. Действие умножения обозначают знаком × (косвенным крестом) или .

(точкой). Знак умножения ставится между множимым и множителем.

Повторить число 7 три раза слагаемым и найти сумму значит 7 умножить на 3. Вместо того, чтобы писать 7 + 7 + 7 пишут при помощи знака умножения короче: 7 × 3 или 7 · 3 Умножение есть сокращенное сложение равных слагаемых. Знак (×) был введен Отредом (1631 г.), а знак .

Христианом Вольфом (1752 г.).

Источник: https://27advokat.ru/svojstva-dejstvija-umnozhenija-slovami-48094/

Распределительное свойство умножения – правила и примеры применения

Свойства действия умножения словами

Используемый в школе распределительный закон умножения позволяет ученикам максимально быстро выполнить все необходимые вычисления. Знание определенных нюансов поможет решить сложные уравнения и различные задачи.

Процесс умножения представляет собой сокращенный процесс сложения. А это означает, что первый множитель выступает в роли числа, которое складывается само с собой определенное количество раз, соответствующее второму множителю.

Пример: 4 * 8 = 4+4+4+4+4+4+4+4 = 32.

Элементарное математическое умножение было изобретено в то время, когда у человечества возникла необходимость выполнять большие вычисления, которые просто неудобно записывать в виде элементарного сложения.

Всем хорошо известно, что можно 8 раз сложить число 4, а можно 4 раза сложить число 8, но итоговый результат от этого не поменяется. Именно в этом и состоит смысл переместительного умножения всех задействованных элементов.

Умножение позволило человеку решить довольно много проблем, но вместе с этим в алгебру пришло и деление, но уже как противоположная математическая операция.

Ключевые особенности

Чтобы даже на начальном этапе ученик мог выполнить умножение суммы некоторых чисел, необходимо просто умножить каждое слагаемое по отдельности и сложить полученный результат.

К примеру: (j + d) * s = sj + sd либо s * (j + d) = sj + sd. Чтобы немного упростить способ решения задачи, описанное правило можно использовать в обратном порядке: s * j + s * d = s * (j + d).

В этом случае общий множитель выносится за пределы скобок.

Если попробовать задействовать многофункциональное распределительное свойство сложения, то в итоге можно будет решить следующие математические примеры:

  • Классическая задача: 35 * 6. Следует представить число 35 как сумму двух чисел 30 и 5, которую просто нужно перемножить на 6: (30 + 5) * 6. Все вычисления выполняются элементарно: 30 * 6 + 5 * 6 = 210.
  • Еще один пример: 4 * (20 + 13). Для решения нужно умножить число 4 на каждое задействованное слагаемое: 4 * 20 + 4 * 13. Сложение примет следующий вид: 80 + 52 = 132.
  • Также следует рассмотреть более сложный пример: 8 * (45 — 3). Необходимо перемножить на число 9 уменьшаемое 45, а также вычитаемое 3. Пример: 8 * 45 — 8 * 3. Если все сделать верно, то итоговый результат примет следующий вид: 360 — 24 = 336.

Умелое применение распределительного свойства умножения поможет избежать распространенных ошибок. Так, основное правило актуально не только по отношению к сумме, но и к разности двух и более выражений. Для укрепления полученных навыков можно попробовать самостоятельно придумать задачу.

Основные математические возможности

Чтобы можно было выполнить определенные арифметические действия по отношению к числу, необходимо поочередно умножить его на каждое слагаемое и в итоге сложить полученные произведения.

А это значит, что для любых частных чисел l, r, w верным будет следующее равенство: w * (l + r) = w * l + w * r. Этот пример отлично выражает распределительный закон сложения и последующего умножения.

Так как число и сумма являются множителями, то после смены их места расположения, задействовав для этого переместительное свойство, можно будет сформировать наиболее подходящее свойство.

Всего специалисты выделяют три свойства распределительного умножения:

  • Элементарное сочетательное. Именно это свойство применяется для тех примеров, где используется минимум 3 множителя. Основная мысль сочетательного свойства в том, что можно легко перемножить первые два множителя, а только потом умножить результат на третий множитель. Стоит учесть, что порядок перемножения может быть абсолютно любым.
  • Переместительное. Произведение не меняется от перемены мест множителя. Для примера из двух множителей это свойство не является критичным, но для заданий с тремя и более множителями это направление может сэкономить много свободного времени.
  • Распределительное. В математике это свойство получило большой спрос для умножения числа на сумму либо разность. Распределительный подход сокращает время решения задачи при правильном подходе. Суть свойства в том, что во время умножения числа на разность либо конкретную сумму можно каждое слагаемое умножить на основное число, а уже потом выполнить сложение.

Все перечисленные направления имеют свои особенности и правила использования на практике, которые обязательно нужно учесть для лучшего усвоения этой темы.

Правила вычитания

Умножение и последующее вычитание натуральных чисел обязательно связывается распределительным свойством.

Учащимся обязательно нужно запомнить формулировку этого правила: умножить определенную разность двух рациональных чисел на конкретное число — это вычитание из произведения уменьшаемого числа произведения данного или неизвестного вычитаемого числа.

Все математические примеры записываются при помощи обычных букв: (s — r)* n = s * n — r * n. Задействованными символами могут называться определенные рациональные целые и дробные числа.

Элементарные примеры распределительного свойства умножения позволяют ученикам освоить технику решения распространенных математических задач. Если необходимо убедиться в равенстве уравнения 5 * (8 — 3) = 5 * 8 — 5 * 3, тогда нужно выполнить несколько арифметических действий.

Так как пример 8 − 3 всегда равен 5, то произведение 5 * (8 — 3) всегда будет иметь следующий результат: 5 * 5 = 5+5+5+5+5=25. Теперь нужно вычислить разность между 5 * 8 и 5 * 3. Решение выглядит следующим образом: 5 * 8 − 5 * 3 = (5+5+5+5+5+5+5+5) — (5+5+5) = 40 — 15 = 25.

Это значит, что равенство 5 * (8 − 3) = 5 * 8 − 5 * 3.

Использование двух и более слагаемых

Распространенное в алгебре распределительное свойство элементарного умножения активно применяется не только по отношению к двум слагаемым, но и для неограниченного количества арифметических элементов. Этот подход можно применить для всех форм дробей, что очень удобно. Стандартная формула имеет следующий вид:

  • d x (e + t + h) = d x e + d x t + d x h .
  • d x (e — t — h) = dxe — dxt — dxh.

В качестве примера следует рассмотреть следующее уравнение: 678 * 4. Чтобы понять все нюансы, надо представить число 678 как сумму трех чисел: 600, 70 и 8.

Если это сделать, то в итоге можно получить следующее решение: (600 + 70 + 8) * 4 = 600 * 4 + 70 * 4 + 8 * 4 = 2400 + 280 + 32 = 2712.

Для более быстрого решения задачи нужно упростить несколько выражений, используя для этого упомянутое ранее свойство.

Если в качестве примера взять уравнение 8 * (4х + 3у), тогда первым делом раскрывают имеющиеся скобки, применяя для этого распределительный закон умножения: 8 * 4х + 8 * 3у = 32х + 24у.

Конечно, полученный результат сложить просто невозможно, так как заявленные слагаемые не являются подобными, к тому же они имеют разную буквенную часть.

Именно поэтому ответ будет выглядеть следующим образом: 32х + 24у.

Если ученик научится использовать при решении различных примеров универсальное распределительное свойство сложения и умножения, то в итоге он сможет легко решать даже самые сложные математические примеры, так как многие ситуации можно свести к устному счету.

Также будет существенно экономиться время при решении многоуровневых задач. Благодаря полученным знаниям, можно будет с легкостью упростить выражения.

Эксперты рекомендуют дважды проверять выполненную работу, так как только в этом случае можно будет избежать ошибок.

Умножение нуля

Несмотря на то что ноль не относится к категории естественных чисел, этому направлению тоже нужно уделить повышенное внимание. Это связано с тем, что такое свойство используется во время умножения натуральных чисел столбиком.

Если строго соблюдать смысл умножения, тогда произведение 0 * х, где х выступает в роли произвольного естественного числа больше единицы, представляет собой сумму х слагаемых. В такой ситуации актуальной является следующая формула: 0 * х = 0+0+0+0+….+0.

Свойства математического сложения позволяют специалистам утверждать, что последняя сумма неизбежно будет равна нулю.

Чтобы иметь возможность сохранить справедливость элементарного умножения используемого числа на единицу, можно считать верным следующее равенство: 0 * 1 = 0. Это значит, что для любого естественного числа х выполняется равенство 0 * х = 0. Чтобы оставалось актуальным переместительное свойство умножения, нужно помнить о справедливости равенства х * 0 = 0 для всех натуральных чисел х.

Произведение естественного числа и нуля равно нулю 0 * х = 0, а также х * 0 = 0. Используемый x представляет собой произвольное натуральное число.

Экспертами было доказано, что последнее утверждение играет важную роль формулировки свойства умножения ранее полученного числа и нуля. К примеру, произведение чисел 87 и 0 равно нулю.

Если попробовать умножить 0 на 897689, то в итоге тоже получим ноль.

Распределительное свойство относительно разности

Правильное решение математических уравнений возможно только в том случае, если ученик предварительно хорошо изучил теоретическую часть этой темы.

Чтобы выполнить элементарное умножение разности на число, необходимо предварительно умножить на него уменьшаемое, а только после этого — вычитаемое, и выполнить вычисление полученных результатов.

Пример: g x (y — u) = g x y — g x u или (y — u) x g = g x y — g x u .

Понять все нюансы помогут следующие три примера:

  • Для решения уравнения 78 * (12 — 5) принято использовать распределительный закон. Первым делом умножают 78 на оба числа: 78 * 12 — 78 * 5. Необходимо отыскать разность полученных значений: 936 — 390 = 546 и записать полученный результат. Ответ: 546.
  • Следующий пример: 78 * 5. Нужно найти значение математического выражения, используя для этого ранее изученные свойства. Следует представить 78 как разность двух чисел 83 и 5. Решение будет выглядеть следующим образом: 78 * 5 = (83 − 5) * 5 = 83 * 5 − 5 * 5 = 390.
  • Еще один арифметический пример: 9 * (2 + 30). Решение этого уравнения довольно простое: 9 * 2 + 9 * 30 = 18 + 270 = 288.

Решать такие задачи элементарно и быстро, но для этого нужно хорошо усвоить все правила, а также рекомендации специалистов, так как только в этом случае можно будет избежать грубых ошибок.

Манипуляции с натуральным числом

Этот раздел связан с умножением единицы на конкретное число. Если следовать смыслу умножения, то в итоге произведение изучаемого арифметического выражения х будет равно сумме х слагаемых, каждое из которых тоже равно единице. Действует элементарная формула: 1 * х = 1+1+1+….+1 = х. Пример: произведение чисел 1 и 78 равно 78, а результатом умножения 1 и 456 есть число 456.

Произведение х * 1 лишено какого-либо смысла, так как это арифметическое выражение представляет собой сумму одного слагаемого, которое равно число х, но сложение определяют для двух и более слагаемых. Чтобы сохранить справедливое переместительное свойство поэтапного умножения, нужно считать верным равенство х * 1 = х.

Опытные математики утверждают, что произведение двух разных чисел, одно из которых приравнивается к нулю, равно другому числу. Это утверждение выступает в качестве официальной формулировки умножения единицы и определенного числа. При помощи букв это свойство записывается так: 1 * х = х * 1 = х. За основу могут использоваться любые натуральные числа.

Многим может показаться, что сегодня нет необходимости разбираться во всех свойствах распределительного умножения, так как под рукой всегда есть калькулятор.

Но даже у программ существуют свои ограничения, что просто недопустимо в банковской отрасли и правительственных отраслях.

Именно поэтому бухгалтеры в обязательном порядке изучают все особенности применения распределительного закона умножения.

Источник: https://nauka.club/matematika/raspredelitelno%D0%B5-svoystv%D0%BE-umnozheniya.html

Умножение, сложение, вычитание и деление целых чисел: основные свойства

Свойства действия умножения словами

Умножение, сложение, вычитание и деление – основные операции с целыми числами. Результаты этих операций с любыми целыми числами обладают рядом характеристик. Иначе говоря, операции умножения, сложения, вычитания и деления целых чисел обладают свойствами. Данная статья посвящена рассмотрению основных свойств умножения, сложения, вычитания и деления целых чисел.

Сложение целых чисел. Основные свойства

Все свойства сложения натуральных чисел оказываются справедливы и для целых чисел. Ведь множество целых чисел ℤ включает в себя множество натуральных чисел ℕ. Приведем ниже основные свойства сложения.

Коммутативное свойство сложения

Переместительное (коммутативное свойство) или переместительный закон.

От перемены мест слагаемых сумма не меняется

a+b=b+a

 Согласно этому свойству, справедливо равенство:

35+251=251+35

Свойство коммутативности работает вне зависимости от знака.

-528+3700=3700+-528

Ассоциативное свойство сложения

Сочетательное (ассоциативное свойство) или сочетательный закон. 

Сложение целого числа с суммой двух целых чисел эквивалентно сложению суммы двух первых чисел с третьим.

a+b+c=a+b+c

Примечание: данное свойство применимо и для большего количества слагаемых.

Вот несколько примеров. Согласно свойству ассоциативности справедливы равенства:

64+81+(-49)=64+81+(-49)=64+81+(-49);

(128+(-75))+96=128+((-75)+96).

Свойства сложения, связанные с числом 0

1. Число нуль – нейтральный по сложению элемент.

Прибавление нуля к любому целому числу не меняет этого числа.

a+0=a

2. Сумма любого целого числа и противоположного ему числа равна нулю.

a+(-a)=0

Умножение целых чисел. Основные свойства

Как и в случае со сложением, все свойства умножения натуральных чисел переносятся на целые числа.

Для умножения также действуют переместительный и сочетательный (коммутативный и ассоциативный) законы.

Переместительное свойство умножения

От перемены мест множителей произведение не меняется.

a·b=b·a

Приведем пример. Очевидно, что произведение целых чисел 2·3 эквивалентно произведению 3·2.

Сочетательное свойство умножения

Сочетательное свойство для умножения эквивалентно сочетательному свойству сложения. В буквенном виже оно записывается следующим образом:

a·(b·c)=(a·b)·c

a, b, c – произвольные целые числа.

Примечание: данное свойство применимо и для большего количества множителей.

В соответствии с этим свойством можно говорить о справедливости следующих равенств:

-12·3·8=-12·3·8;

119·((-251)·36)=(119·(-251))·36.

Опиши задание

Умножение числа на нуль

Результатом умножения любого целого числа на нуль является число нуль.

a·0=0

Справедливо и обратное: произведение двух целых чисел a и b равно нулю, если хотя бы один из множителей равен нулю.

a·b=0 если a=0 или b=0.

Умножение числа на единицу

Умножение любого целого числа на единицу дает в результате это число. Иными словами, умножение на единицу не изменяет умножаемое число.

a·1=a

Распределительное свойство умножения относительно суммы.

Произведение целого числа a на сумму двух чисел b и c равно сумме произведений a·b и a·c.

a·(b+c)=a·b+a·c

Данное свойство часто используется при упрощении выражений, одновременно содержащих как операции сложения, так и умножения.

В совокупности с ассоциативным свойством и распределительным законом можно легко расписать произведение целого числа на сумму из более чем трех слагаемых, а также произведение сумм.

Вычитание целых чисел. Основные свойства

Вычитание – действие, обратное сложению. Число c является разностью двух чисел a и b тогда, когда сумма b+c равна a. Можно сказать, что разность чисел a и b – это сумма чисел a и -b. Свойства вычитания являются следствием свойств сложения и умножения.

Основные свойства вычитания

  1. Вычитание чисел не обладает переместительным свойством за исключением случая, когда a=b. a-b≠b-a.
  2. Разность целых чисел, равных друг другу: a-a=0.
  3. Вычитание суммы двух чисел из другого числа: a-(b+c)=a-b-c.
  4. Вычитание целого числа из суммы: a+b-c=a-c+b=a+(b-c).
  5. Распределительное свойство умножения относительно вычитания: a·(b-c)=a·b-a·c.

Деление целых чисел. Основные свойства

Деление – операция, обратная умножению. Число c называется частным от деления чисел a и b, когда произведение b·c равно a. Запишем основные свойства деления целых чисел.

Основные свойства деления

  1. Деление на нуль невозможно.
  2. Деление нуля на число: 0a=0.
  3. Деление равных чисел: aa=1.
  4. Деление на единицу: a1=a.
  5. Для деления переместительное свойства не выполняется: ab≠ba.
  6. Деление суммы и разности на число: a±bc=ac±bc.
  7. Деление произведения на число: a·bc=ac·b, если a делится на c; a·bc=a·bс, если b делится на c; a·bc=a·bс=ac·b, если a и b делятся на c.
  8. Деление числа на произведение: ab·c=ab·1c=ac·1b.

Источник: https://Zaochnik.com/spravochnik/matematika/dejstvitelnye-ratsionalnye-irratsionalnye-chisla/umnozhenie-slozhenie-vychitanie-i-delenie-tselyh/

Законы математики

Свойства действия умножения словами

В нашей жизни есть законы, которые надо соблюдать. Соблюдение законов гарантирует стабильность и гармоничное развитие. Несоблюдение же законов приводит к печальным последствиям.

У математики есть свои законы, которые тоже следует соблюдать. Несоблюдение законов математики приводит в лучшем случае к тому, что оценка учащегося снижается, а в худшем случае приводит к тому, что падают самолёты, зависают компьютеры, улетают крыши домов от сильного ветра, снижается качество связи и тому подобные нехорошие явления.

Законы математики состоят из простых свойств. Эти свойства нам знакомы со школы. Но не мешает вспомнить их ещё раз, а лучше всего записать или выучить наизусть.

В данном уроке мы рассмотрим лишь малую часть законов математики. Их нам будет достаточно для дальнейшего изучения математики.

Переместительный закон сложения

Переместительный закон сложения говорит о том, что от перестановки мест слагаемых сумма не изменяется. Действительно, прибавьте пятерку к двойке — получите семёрку. И наоборот, прибавьте двойку к пятерке — опять получите семёрку:

5 + 2 = 7

2 + 5 = 7

Если положить на одну чашу весов 10 килограмм яблок и на другую чашу так же положить 10 килограмм яблок, то весы выровнятся, и не важно, что яблоки в пакетах лежат вразброс.

Если мы возьмём пакет с весов и перемешаем яблоки находящиеся в нём, словно шары в лотерейном мешке, пакет всё так же будет весить 10 килограмм. От перестановки мест слагаемых сумма не изменится.

Слагаемые в данном случае это яблоки, а сумма это итоговый вес.

Таким образом,  между выражениями 5 + 2 и 2 + 5 можно поставить знак равенства. Это будет означать, что их сумма равна:

5 + 2 = 2 + 5

7 = 7

Полагаем что, вы изучили один из предыдущих уроков, который назывался выражения, поэтому мы без тени смущения запишем переместительный закон сложения с помощью переменных:

a + b = b + a

Записанный переместительный закон сложения будет работать для любых чисел. Например, возьмём любых два числа. Пусть а = 2, b = 3. Мы присвоили переменным a и b значения 2 и 3 соответственно. Эти значения отправятся в главное выражение a + b = b + a и подставятся куда нужно. Число 2 подставится вместо а, число 3 место b

Сочетательный закон сложения

Сочетательный закон сложения говорит о том, что результат сложения нескольких слагаемых не зависит от порядка действий. Этот закон позволяет группировать слагаемые для удобства их вычислений.

Рассмотрим сумму из трёх слагаемых:

2 + 3 + 5

Чтобы вычислить данное выражение, можно сначала сложить числа 2 и 3 и полученный результат сложить с числом 5. Для удобства сумму чисел 2 и 3 можно заключить в скобки, указывая тем самым, что эта сумма будет вычислена в первую очередь:

2 + 3 + 5 = (2 + 3) + 5 = 5 + 5 = 10

Либо можно сложить числа 3 и 5, затем полученный результат сложить с числом 2

2 + 3 + 5 = 2 + (3 + 5) = 2 + 8 = 10

Видно, что в обоих случаях получается один и тот же результат.

Таким образом, между выражениями (2 + 3) + 5 и 2 + (3 + 5) можно поставить знак равенства, поскольку они равны одному и тому же значению:

(2 + 3) + 5 = 2 + (3 + 5)

10 = 10

Запишем сочетательный закон сложения с помощью переменных:

(a + b) + c = a + (b + c)

Переместительный закон умножения

Переместительный закон умножения говорит о том, что если множимое и множитель поменять местами, то произведение не изменится. Давайте проверим так ли это. Умножим пятерку на двойку, а затем наоборот двойку на пятерку.

5 × 2 = 10

2 × 5 = 10

В обоих случаях получается один и тот же результат, поэтому между выражениями 5 × 2 и 2 × 5 можно поставить знак равенства, поскольку они равны одному и тому же значению:

5 × 2 = 2 × 5

10 = 10

Запишем переместительный закон умножения с помощью переменных:

a × b = b × a

Для записи законов в качестве переменных необязательно использовать именно буквы a и b. Можно использовать любые другие буквы, например c и d или x и y. Тот же переместительный закон умножения можно записать следующим образом:

x × y = y × x

Сочетательный закон умножения

Сочетательный закон умножения говорит о том, что если выражение состоит из нескольких сомножителей, то произведение не будет зависеть от порядка действий.

Рассмотрим следующее выражение:

2 × 3 × 4

Данное выражение можно вычислять в любом порядке. Сначала можно перемножить числа 2 и 3, и полученный результат умножить на 4:

Либо сначала можно перемножить числа 3 и 4, и полученный результат перемножить с числом 2

Таким образом, между выражениями (2 × 3) × 4 и 2 × (3 × 4) можно поставить знак равенства, поскольку они равны одному и тому же значению:

Запишем сочетательный закон умножения с помощью переменных:

a × b × с = (a × b) × с = a × (b × с)

Пример 2. Найти значение выражения 1 × 2 × 3 × 4

Данное выражение можно вычислять в любом порядке. Вычислим его слева направо в порядке следования действий:

Распределительный закон умножения

Распределительный закон умножения позволяет умножить сумму на число или число на сумму.

Рассмотрим следующее выражение:

(3 + 5) × 2

Мы знаем, что сначала надо выполнить действие в скобках. Выполняем:

(3 + 5) = 8

В главном выражении (3 + 5) × 2 выражение в скобках заменим на полученную восьмёрку:

8 × 2 = 16

Получили ответ 16. Этот же пример можно решить с помощью распределительного закона умножения. Для этого каждое слагаемое, которое в скобках, нужно умножить на 2, затем сложить полученные результаты:

Мы рассмотрели распределительный закон умножения слишком развёрнуто и подробно. В школе этот пример записали бы очень коротко. К такой записи тоже надо привыкать. Выглядит она следующим образом:

(3 + 5) × 2 = 3 × 2 + 5 × 2 = 6 + 10 = 16

Или ещё короче:

(3 + 5) × 2 = 6 + 10 = 16

Теперь запишем распределительный закон умножения с помощью переменных:

(a + b) × c = a × c + b × c

Давайте внимательно посмотрим на начало этого распределительного закона умножения. Начало у него выглядит так: (a + b) × c.

Если рассматривать выражение в скобках (a + b), как единое целое, то это будет множимое, а переменная с будет множителем, поскольку соединены они знаком умножения ×

Из переместительного закона умножения мы узнали, что если множимое и множитель поменять местами, то произведение не изменится.

Если множимое (a + b) и множитель c поменять местами, то получим выражение c × (a + b). Тогда получится, что мы умножаем переменную c на сумму (a + b). Для выполнения такого умножения, опять же применяется распределительный закон умножения. В данном случае переменную c нужно умножить на каждое слагаемое в скобках:

c × (a + b) = c × a + c × b

Пример 2. Найти значение выражения 5 × (3 + 2)

Умножим число 5 на каждое слагаемое в скобках и полученные результаты сложим:

5 × (3 + 2) = 5 × 3 + 5 × 2 = 15 + 10 = 25

Пример 3. Найти значение выражения 6 × (5 + 2)

Умножим число 6 на каждое слагаемое в скобках и полученные результаты сложим:

6 × (5 + 2) = 6 × 5 + 6 × 2 = 30 + 12 = 42

Если в скобках располагается не сумма, а разность, то сначала нужно умножить множимое на каждое число, которое в скобках. Затем из полученного первого числа вычесть второе число. В принципе, ничего нового.

Пример 4. Найти значение выражения 5 × (6 − 2)

Умножим 5 на каждое число в скобках. Затем из полученного первого числа вычтем второе число:

5 × (6 − 2) = 5 × 6 − 5 × 2 = 30 − 10 = 20

Пример 5. Найти значение выражения 7 × (3 − 2)

Умножим 7 на каждое число в скобках. Затем из полученного первого числа вычтем второе число:

7 × (3 − 2) = 7 × 3 − 7 × 2 = 21 − 14 = 7

Задания для самостоятельного решения

Задание 1. Найдите значение выражения, используя распределительный закон умножения: 3 × (7 + 8) = 3 × 7 + 3 ×­ 8 = 21 + 24 = 45 Задание 2. Найдите значение выражения, используя распределительный закон умножения: 5 × (6 + 8) = 5 × 6 + 5 × 8 = 30 + 40 = 70 Задание 3.

Найдите значение выражения, используя порядок выполнения действий:4 × (5 + 4) + 9 × (3 + 2) Задание 4.

Найдите значение выражения, используя распределительный закон умножения:4 × (5 + 4) + 9 × (3 + 2) 4 × (5 + 4) + 9 × (3 + 2) = 4 × 5 + 4 × 4 + 9 × 3 + 9 × 2 = 20 + 16 + 27 + 18 = 81 Задание 5.

Найдите значение выражения, используя распределительный закон умножения:16 × (2 + 7) + 5 × (4 + 1) 16 × (2 + 7) + 5 × (4 + 1) = 16 × 2 + 16 × 7 + 5 × 4 + 5 × 1 = 32 + 112 + 20 + 5 = 169

Понравился урок?
Вступай в нашу новую группу и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

Источник: http://spacemath.xyz/zakoni_matematiki/

Свойства арифметических действий

Свойства действия умножения словами

Сочетай, перемещай, свойства действий

узнавай

Напомним известные уже из арифметики главнейшие свойства действий сложения, вычитания, умножения и деления, так
как этими свойствами придется часто пользоваться и в алгебре.

Сочетательный закон сложения

Сумма нескольких слагаемых не изменится, если какие-нибудь из них заменить их суммой .

Пример:3 + 5 + 7 = 3 + (5 + 7) = 3 + 12 = 15;4 + 7+11+6 + 5 = 7 +(4+ 5)+ (11+6) = 7 + 9+17 = 33.В общем случае:а + b + с = а+(b + с) = b+(а + с) и т. п.

Иногда этот закон выражают так: слагаемые можно соединять в какие угодно группы.

Чтобы прибавить к какому-либо числу сумму нескольких чисел, можно прибавить отдельно каждое слагаемое одно за другим

Пример:5 + (7 + 3) = (5 + 7) + 3 = 12 + 3 = 15.

В общем случае:

a+(b+c+d+…+x)=a+b+c+d+…+x

Свойство вычитания суммы из числа

Чтобы вычесть из какого-нибудь числа сумму нескольких чисел, можно вычесть отдельно каждое слагаемое одно за другим.

Например:20 — (5+ 8) = (20 — 5) — 8 = 15 — 8 = 7.В общем случае:

а — (b + с + d+ …) = а — Ь — с — d — …

Свойство сложения разности чисел

Чтобы прибавить разность двух чисел, можно прибавить уменьшаемое и затем вычесть вычитаемое.

Пример:8 + (11-5) = 8+ 11 -5= 14.В общем случае:

а + (b — с) = а + Ь — с.

Свойство вычитания разности из числа

Чтобы вычесть разность, можно сначала прибавить вычитаемое и затем вычесть уменьшаемое.

Например:18-(9-5) = 18 + 5-9= 14.Вообще:

а — (Ь — с) = а + с — b.

Умножение числа на произведение чисел

Чтобы умножить какое-либо число на произведение нескольких сомножителей, можно умножить это число на
первый сомножитель, полученный результат умножить на второй сомножитель и т. д.

Так:3*(5*4) = (3*5)*4= 15*4 = 60.Вообще:a•(bcd…) = {[(a·b)•c]•d}…Чтобы умножить произведение нескольких сомножителей на какое-либо число, можно умножить на это число один

из сомножителей, оставив другие без изменения.

Так:3 • 2 • 5 • 3 = (3 • 3) • 2 • 5 = 3 • (2 • 3) • 5 = 3 • 2 • (5 • 3).Вообще:

(abc.. )m = (аm)bс… = а(bm)с… и т. п.

Умножение числа на сумму чисел

Чтобы умножить сумму на какое-либо число, можно каждое слагаемое умножить на это число и полученные ре-
результаты сложить.

Так:(5 + 3)·7 = 5·7 + 3·7.Вообще:

(а + b + с + .. .)n = an + bn + cn + …

В силу переместительного закона умножения это же свойство можно выразить так: чтобы умножить какое-либо число на
сумму нескольких чисел, можно умножить это число на каждое слагаемое отдельно и полученные результаты сложить.

Так:5·(4 + 6) = 5·4 + 5·6.Вообще:

r·(а + Ь + с +…) = rа + rb + rс + …

Это свойство называется распределительным законом умножения, так как умножение, производимое над суммой, распределяется на каждое слагаемое в отдельности.

Распределительный закон умножения для разности чисел

Распределительный закон можно применять и к разности.

Так:
(8 — 5) • 4 = 8 • 4 — 5 • 4;

7 • (9 — 6) = 7 • 9 — 7 • 6.

Вообще:
(а — b)с = ас — bc,

а(b — с) = ab — ас,т. е. чтобы умножить разность на какое-либо число, можно умножить на это число отдельно уменьшаемое и вычитаемоеи из первого результата вычесть второй; чтобы умножить какое-либо число на разность, можно это число умножить

отдельно на уменьшаемое и вычитаемое и из первого результата вычесть второй.

Деление суммы на число

Чтобы разделить сумму на какое-либо число, можно разделить на это число каждое слагаемое отдельно и полученные результаты сложить:

Например:

(30+12+5)/3=30/3+12/3+5/3Вообще:

(a+b+c+…+v)/m= (a/m)+(b/m)+(c/m)+…(v/m)

Деление разности на число

Чтобы разделить разность на какое-либо число, можно разделить на это число отдельно уменьшаемое и вычитаемое
и из первого результата вычесть второй:

(20-8)/5= 20/5 — 8/5

Вообще:

(a-b)/c = (a/c) -(b/c)

Деление произведения на число

Чтобы разделить произведение нескольких сомножителей на какое-либо число, можно разделить на это число один
из сомножителей, оставив другие без изменения:

(40 • 12 • 8) : 4 = (40:4) • 12 • 8 = 10 • 12 • 8 = 40 • 12 • 2.
Вообще:

(a·b·c…) : t = (а : t)bс… = а(b : t)с… и т. д.

Деление числа на произведение

Чтобы разделить какое-либо число на произведение нескольких сомножителей, можно разделить это число на
первый сомножитель, полученный результат разделить на второй сомножитель и т.д.:

120 : (12 • 5 • 3) = [(120 : 2) : 5] : 3 = (60 : 5) : 3 = 12 : 3 = 4.

Вообще:

а : (bcd …) = [(а : b) : с] : d… и т. п.

Укажем еще следующее свойство деления:

Если делимое и делитель умножим (или разделим) на одно и то же число, то частное не изменится.Поясним это свойство на следующих двух примерах:1)8:3 = 8/3|,умножим делимое и делитель, положим, на 5; тогда получимновое частное: (8*5)/(3*5)

которое по сокращении дроби на 5 даст прежнее частное — 8/3

Вообще, какие бы числа a, b и m ни были, всегда(am) : (bm) = а : b, что можно написать и так:

am/bm= a/b

Если частное не изменяется от умножения делимого и делителя на одно и то же число, то оно не изменяется и от деления делимого и делителя на одно и то же число, так как деление на какое-нибудь число равносильно умножению на обратное число.

Источник: http://df-dt.com/svojstva-arifmeticheskix-dejstvij.html

О ваших правах
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: